If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+30X-5000=0
a = 1; b = 30; c = -5000;
Δ = b2-4ac
Δ = 302-4·1·(-5000)
Δ = 20900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20900}=\sqrt{100*209}=\sqrt{100}*\sqrt{209}=10\sqrt{209}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{209}}{2*1}=\frac{-30-10\sqrt{209}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{209}}{2*1}=\frac{-30+10\sqrt{209}}{2} $
| 16(16-x)=16 | | 6x-7+5x+16=180 | | 5(x+8)-7x+15(x+2)=3x+274 | | 12(5-x)=0 | | 12p-8=-7 | | 0=16t-1.86t^2 | | -60-7x=84-3x | | x+2=6/7 | | (6.6/3.3)*u=5.2 | | -5a-5=a+79 | | V=1/33.1416h | | n-97=-3n-9 | | 4(x-2)+6=6(2x-7) | | -6e+4=e+123 | | x+4/5=18/20 | | 6x-20=8+2x | | 2/3x=9/14 | | 18y+10=10 | | a+306=-9a+6 | | 7-9x=475 | | 1/2n+7=(n+14)/2 | | 6n-28=n | | 7x+30x=180 | | -5x-207=13x+117 | | (3x+4)=(4+6) | | y+261=-5y-3 | | 7x+15=197 | | 6x-33=3(x-2) | | 6(8-3x)2x+1)=107 | | 3x2+13x=10 | | x-2•3=54 | | 55n+50=45n+200 |